
Ground-Water Withdrawal Wells  
Particle Tracking

Currently (2005), ground-water withdrawal wells 
are operating at SWMU 1&2, SWMU 5, SWMU 8, and 
SWMU 10. Particle-tracking results from these SWMUs under 
conditions with the ground-water withdrawal wells pumping 
show that no particles leave the SWMUs (fig. 32).

In 2005, five new ground-water withdrawal wells 
along the airfield road were scheduled to begin pumping. 
To analyze the effect of these new wells on the flowpaths 
from SWMU 1&2, a particle-tracking simulation was per-
formed with the existing ground-water withdrawal wells at 
SWMU 1&2 turned off and the new wells along the airfield 
road turned on. The airfield road ground-water withdrawal 
wells and the J4 test cell capture about 89 percent of the 

particles from SWMU 1&2, with about 11 percent of the 
particles discharging near Rutledge Falls (fig. 33). To estimate 
the travel time of ground water from the area near the airfield 
road ground-water withdrawal wells to Big Spring at Rutledge 
Falls, a simulation was performed starting particles just down-
gradient of the capture area of the airfield road withdrawal 
wells. The estimate of travel time from the airfield road with-
drawal wells area to Big Spring at Rutledge Falls ranges from 
1 to 5 years with a mean travel time of 2 years and a median 
travel time of 2 years. This mean travel time of 2 years from 
the airfield road area to Big Spring at Rutledge Falls, com-
pared with the mean travel time of 46 years from SWMU 1&2 
to Big Spring at Rutledge Falls implies that the airfield road 
withdrawal wells should substantially reduce the time required 
to observe a change in contaminant discharge from the “north-
west plume” at Big Spring at Rutledge Falls.

Constant head inflow: 0.06
Constant head outflow: 0.14

Constant head inflow: 0.95
Constant head outflow: 4.28

Constant head inflow: 0
Constant head outflow: 5.4

Constant head inflow: 0
Constant head outflow: 0.06
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               dewatering

4.07 – Seepage to drains
0.18 – Discharge to wells and
               dewatering

5.01 – Seepage to drains
0.22 – Discharge to wells and
               dewatering

1.48  – Seepage to drains
0.004 – Discharge to wells and
                dewatering
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Figure 28.  Distribution of water-budget components among the layers of the digital flow model 
for the Arnold Air Force Base area.
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Dewatering Facilities Particle Tracking

Three particle-tracking simulations were run to analyze 
the effects of dewatering facilities on flow paths in the Main 
Test Area (MTA). In the first simulation, particles were placed 
in the MTA (in a rectangular area bounded by Third and Fifth 
Streets and Avenues C and E) and tracked forward under 
conditions with all dewatering facilities turned on (fig. 34). In 
the second simulation, particles were placed in the MTA and 
tracked forward under conditions with all dewatering facili-
ties turned off (fig. 35). In the third simulation, particles were 
placed at the location of the dewatering facilities and tracked 
backwards to their recharge locations (fig. 36). These simula-
tions illustrate that the dewatering facilities have a substantial 
effect on flow paths that were simulated from the MTA and are 
effective in containing most of the ground water in this area.

Model Limitations

Models, by their very nature, are simplifications of the 
natural system. Factors that affect how well a model represents 
the natural system include the model scale; inaccuracies in 
estimating hydraulic properties; inaccurate or poorly defined 
boundary conditions; and the accuracy of pumping, water-
level, and streamflow data. The model presented in this report 
is consistent with the conceptual model and hydrologic data of 
the area. The model uses a variably spaced grid so the model 
resolution is greatest near SWMUs, ground-water withdrawal 

wells, and dewatering facilities. The model will not provide 
accurate predictions on a scale smaller than the grid resolution.

The hydraulic-conductivity zones used in the model rep-
resent large-scale variations in hydraulic properties; the actual 
spatial variations of hydraulic properties of the aquifer system 
occur on a much smaller scale and are poorly defined. Addi-
tionally, the aquifer system, being karst in nature, has a wide 
range of measured hydraulic conductivity. Finally, evidence 
indicates that the aquifer system behaves anisotropically, but 
no measured values of the degree of anisotropy exist.

The model is calibrated to average annual conditions 
during 2002 and may not represent flow during seasonal 
extremes. Seasonal potentiometric maps (Robinson and others, 
2005) and continuous water-level data (fig. 16) indicate some 
local seasonal shifts in flow directions in the upper part of the 
Crumpton Creek Basin. Similarly, ground-water gradients near 
the divide north of SWMU 10 may change seasonally.

The particle-tracking program, MODPATH, is based on 
advective transport of “water” particles and does not consider 
additional processes such as sorption, dispersion, and diffusion 
that would affect the travel times of a ground-water contami-
nant. Travel times also are directly related to assumptions 
about aquifer porosity. Since no measured values of porosity 
exist for the study area, the simulations use a uniform value 
of porosity for each layer as estimated from typical values for 
the lithologies of the layers. If porosity estimates are too high, 
travel times would be underestimated. If porosity estimates are 
too low, travel times would be overestimated.
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model parameters.

38    Hydrogeology and Simulation of Ground-Water Flow at Arnold Air Force Base … 2002 Update



Figure 30.  Forward particle tracking from SWMU 1&2, SWMU 5, SWMU 8, and SWMU 10 at Arnold Air Force Base 
with no ground-water withdrawal wells pumping.
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Figure 31.  Forward particle tracking from SWMU 10 at Arnold Air Force Base under an alternative calibration of the  
flow model.
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Figure 32.  Forward particle tracking from SWMU 1&2, SWMU 5, SWMU 8, and SWMU 10 at Arnold Air Force Base 
with ground-water withdrawal wells pumping.
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Figure 33.  Forward particle tracking from SWMU 1&2 at Arnold Air Force Base with the airfield road ground-water 
withdrawal wells pumping.
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Figure 34.  Forward particle tracking from the Main Test Area (SWMU 74) at Arnold Air Force Base with all dewatering 
facilities turned on.
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Figure 35.  Forward particle tracking from the Main Test Area (SWMU 74) at Arnold Air Force Base with all dewatering 
facilities turned off.
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Figure 36.  Backward particle tracking from dewatering facilities at the Main Test Area at Arnold Air Force Base.

Advective Flow Particle Tracking  45 



Summary
Arnold Air Force Base (AAFB) occupies about 

40,000 acres in Coffee and Franklin Counties, Tennessee. The 
primary mission of AAFB is to support the development of 
aerospace systems. Numerous site-specific ground-water con-
tamination investigations have been conducted at designated 
Solid Waste Management Units (SWMUs) at AAFB. Several 
synthetic volatile organic compounds (VOCs), primarily chlo-
rinated solvents, have been identified in the ground water at 
AAFB. Two ground-water contaminant plumes that originate 
at AAFB, the “SWMU 8 plume” and the “northwest plume,” 
have been shown to extend to regional discharge points outside 
the AAFB boundary.

The ground-water system at AAFB can be divided into 
several different zones or aquifers. The Manchester aquifer, 
the primary source of drinking water in the area, consists of 
chert gravels at the base of the regolith and solution open
ings in the upper part of the bedrock. A ground-water divide, 
approximately coinciding with the Duck River-Elk River 
surface-water divide, underlies AAFB and extends from 
southwest to northeast. Ground water flows from the divide 
area to the discharge areas, which are the major streams, 
springs, lakes, and reservoirs around the base. Several troughs 
are present in the potentiometric surface. The most prominent 
trough trends northwest to southeast in the Crumpton Creek 
Basin. The troughs in the potentiometric surface are believed 
to be associated with zones of high permeability within the 
aquifer that are important regional flow paths. These pathways 
share the following characteristics: a depression or trough in 
the bedrock surface, a trough in the ground-water surface, low 
gradients in the ground-water surface, and a large spring or 
group of springs at the downgradient end.

In the study area, recharge occurs from direct infiltration 
of precipitation throughout the study area. Based on water-
budget and stream base-flow data, the AAFB study area can be 
divided into four areas with different recharge rates. The areas 
are: The Barrens area along the regional drainage divide; the 
Spring Creek, Dry Creek (at Estill Springs), and Taylor Creek 
Basins in the southwestern part of the study area; Sinking 
Pond; and the rest of the study area.

Ground water is withdrawn at numerous locations at 
AAFB for two primary reasons: ground-water withdrawal 
wells associated with ground-water contamination and dewa-
tering activities around below-grade testing facilities. Ground-
water withdrawal wells currently (2005) are operating at 
SWMU 1&2, SWMU 5, SWMU 8, and SMWU 10. Dewater-
ing activities also occur at more than 20 facilities at AEDC.

The previous ground-water flow model (1992) was 
updated to incorporate new data and concepts about the 
ground-water flow system. For the computer flow model, the 
Highland Rim aquifer system was divided into four layers 
to simulate ground-water flow. The layers were defined on 
the basis of differences in physical characteristics that affect 
hydrologic properties. Model layer 1 corresponds to the 

shallow aquifer. Model layer 2 corresponds to the upper part 
of the Manchester aquifer. Model layer 3 corresponds to the 
lower part of the Manchester aquifer. Model layer 4 corre-
sponds to the Fort Payne aquifer.

Model parameters (Harbaugh and others, 2000) were 
defined for recharge and hydraulic-conductivity zones. The 
digital model developed for this study was calibrated to 
steady-state conditions as defined by averaging measurements 
from spring and fall 2002. Overall, simulated water levels 
agree reasonably well with observed water levels. Water-level 
data at 615 wells were available for comparison to simulated 
conditions. The root mean square error for measured compared 
to simulated water levels was 9.8 feet. The average head dif-
ference between measured and simulated heads is –0.47 feet. 
The model has seven hydraulic-conductivity parameters with 
calibrated values that range from 0.2 to 6,500 feet per day. 
The model has four recharge parameters with calibrated rates 
of 4.2, 7.8, 17.7, and 110 inches per year (the high value 
represents focused recharge at Sinking Pond). The calibrated 
recharge rates correspond to an average recharge rate over the 
entire model area of 7.6 inches per year.

Particle-tracking flow paths were analyzed from selected 
SWMUs. From SWMU 1&2, most of the particles (70 per-
cent) move to the northwest under the retention pond, then 
move west under the air field, then follow a prominent trough 
in the ground-water surface to discharge to Big Spring at 
Rutledge Falls. Pathlines from SWMU 5 show that particles 
generally move west and northwest to discharge to Cat Creek, 
Bates Spring Branch, or seeps and springs along the Highland 
Rim escarpment. Pathlines from SWMU 8 show that particles 
move to the southeast to discharge along Spring Creek. Path-
lines from SWMU 10 show that particles move to the north-
east before turning south to discharge to springs along the 
lower reach of Bradley Creek. Under an alternate calibration 
of the flow model, particles from SWMU 10 diverged to show 
two flow paths that both discharged to springs along the lower 
reach of Bradley Creek. Based on a detailed review of local 
water levels and water-quality data, this alternate scenario is 
believed to be less likely than the first one presented here, but 
may occur periodically or seasonally.

Currently (2005), ground-water withdrawal wells 
are operating at SWMU 1&2, SWMU 5, SWMU 8, and 
SWMU 10. Particle-tracking results from these SWMUs, 
under conditions with the ground-water withdrawal wells 
pumping, show that no particles leave the SWMUs. In 2005, 
five new ground-water withdrawal wells along the airfield 
road were scheduled to begin pumping to capture ground-
water contamination that has already migrated beyond the 
SWMU 1&2 boundaries. The airfield road ground-water 
withdrawal wells and the J4 test cell capture about 89 percent 
of the particles from SWMU 1&2. About 11 percent of the 
particles under this simulation discharge near Rutledge Falls.

Three particle-tracking simulations were run to ana-
lyze the effects of dewatering facilities on flow paths in the 
Main Test Area (MTA). These simulations illustrate that the 
dewatering facilities have a substantial effect on flow paths 
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from the MTA and are effective in containing most of the 
ground water in this area.

The updated ground-water flow model is consistent with 
all current data on the ground-water system at AAFB. The 
model should provide a reliable tool to assist AAFB in manag-
ing the ground-water resources at the base.
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